GROUND LESSON 2

LESSON OBJECTIVE:

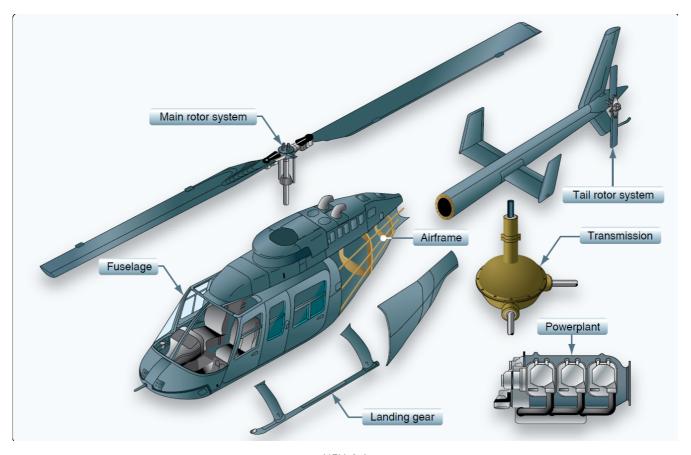
The student will be introduced to basic helicopter design and the helicopter components.

LESSON CONTENT:

- A. Helicopter components
- -Main rotor
- -Tail rotor
- -Transmission; main and tail
- -Swashplate assembly
- -Drive train and tail boom
- -Clutch; centrifugal, friction drive
- -Powerplant (Basics)

Principles Piston vs. Turbine

Magneto system


- B. Flight controls
- -Cyclic
- -Collective
- -Throttle
- -Pedals
- C. Electrical system
- -Battery
- -Generator
- -Circuit breakers
- -Aircraft lights; navigation/position, anti-collision, landing lights
- D. Fuel and fuel system
- -Proper grade fuel
- -Fuel system operation
- -Fuel contamination; preventive measures, elimination
- of contamination in fuel
- -Refueling procedures and grounding
- E. Oil and oil system, hydraulic system if appropriate
- -Oil; type and quantity
- -Oil system operation
- -Hydraulic system; type, hydraulic fluid used, servicing
- F. Instruments
- -Function, markings, and limitations
- -Dual tachometer
- -Manifold pressure gauge
- G. Flight instruments, function, markings, and limitations
- -Pitot static source

- -Alternate pitot static source
- -Airspeed indicator; indicated airspeed, calibrated airspeed, true airspeed
- H. Pressure altimeter
- -Indicated altitude
- -True altitude
- -Pressure Altitude
- -Absolute altitude
- I. Vertical speed indicator
- J. Gyroscopic instruments
- functions, markings, limitations
- -Principle of gyroscope
- -Gyroscope errors
- -Power sources; vacuum system, electrical system
- -Attitude indicator
- -Turn and slip indicator
- K. Magnetic Compass
- -Compass errors

COMPLETION STANDARDS:

This lesson will be complete when, by oral examination, the student displays an understanding of the material presented. Recommended study material for this lesson: Basic Helicopter Handbook chapter 4 and 5, Helicopter Pilot Manual chapter 1, section A, chapter 2, and the Pilot Operating Handbook (System Description). Recommendation is for the instructor to spend some lesson time identifying components on an actual helicopter

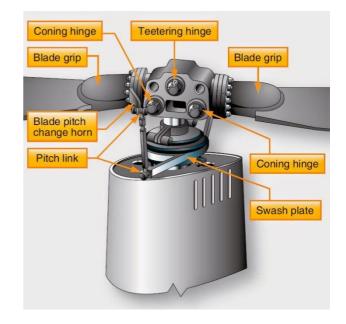
2.1. Helicopter components

HFH 4-1

MAIN ROTOR(HFH Ch4)

Rotating airfoil that generates lift

Consist of:


- A mast
- Rotor hub
- 2 or more rotor blades
- Swashplate
- Control tubes, pitch links

Three different types

- Rigid rotor system
- Only feather
- They compensate for flapping, by bending Operating loads absorbed by material bending rather than by hinges
 - Semi-rigid rotor system
- ☐ Feather and flapping
- ☐ Two blades

Blades rigidly attached to the rotor hub

☐ Rigid in plane

□ Teetering hinge allows flapping as a unit
 - Fully articulated
 □ Each blade can feather, flap, lead/lag independently
 □ Dampers prevent excessive lead/lag of the blades
 □ Lead/lag compensates for Coriollis effect

Semi-rigid

Rigid HFH 4-4

Fully-articulated HFH 4-9

Compare with three types:

Compare with three types.				
Type	Advantages	Disadvantages		
Rigid	-Crisp response	-More vibrations		
	-Mechanically simple	-Structurally complex		
		-Expensive		
		-Mast Moment		
Semi-rigid	-Easy to hangar	-Slower response: Fewer blades		
Fully-articulated	-Crisp response	-Mechanically complex:More drag		
	-Stable and less vibrations	-Expensive		
		-High MX cost		

TAIL ROTOR(Antitorque System)4-7

Counteracts the torque produced by the Main rotor

Consist of

- -Shaft
- Swashplate
- 2, or more blades
- Hinges, bearings, pitch links

Directional control in hover operated with pedals

Three types of Tail rotors

-Conventional tail rotor

2 blade system (R22)

Teetering Delta Hinges

Reduces flapping

Offset hinge mechanically alters the pitch angle by using a pivot point

AoA is increased

Tail rotor can be placed closer to tail boom

increases structural strength

Less weight

Less vibration

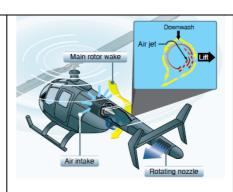
- Fenestron

Several small blades "fan in tail"

Angle in-between the Blades are off-set, to reduce noise

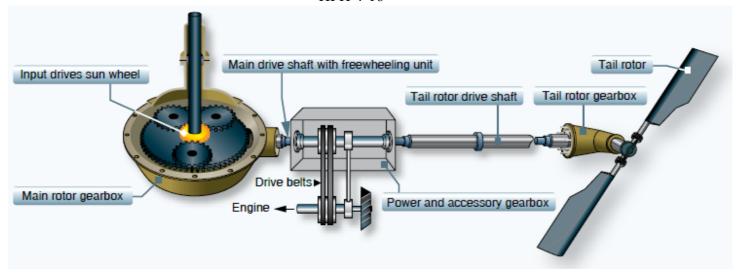
-NOTAR

No Tail Rotor uses Main Rotors downwash


Utilizing the Coanda effect

Conventional

Fenestron


NOTAR(HFH4-15)

Compare with each type:

Type	Advantages	Disadvantages	
Conventional	-Delta hinge reduces	-Less efficient than Fenestron	
	- Flapping	-Foreign object can easily damage system	
	- Weight	-Noisy	
	- Vibrations		
Fenestron	-More efficient than a conventional	-Shrouded fan decreasing performance	
	Tail Rotor	Therefore a more RPMs are needed	
	-Quiet	which requires more power	
	-Safer for foreign objects	-Increased weight due to the shroud □	
		-Expensive	
NOTAR	-No foreign objects can damages the	-Slower reaction	
	system		
	-Reduces vibration		

TRANSMISSIN:MAIN AND TAIL

HFH 4-16

Changes direction of rotation and RPM of the driveshaft, mounting point for Main rotor and Tail rotor

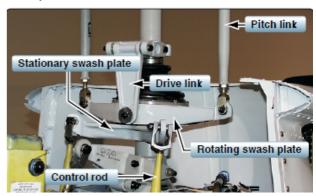
Adjust the outcome RPM from the engine to an optimum RPM for the MR and TR

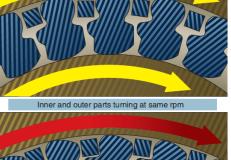
SWASHPLATE ASSEMBLY (HFH 4-11)

Transmits control inputs from the cyclic and collective to the rotor system

Allows control inputs from a stationary assembly through to a rotating assembly

- Consists of
 - -Rotating swashplate
 - Stationary swashplate
 - Pitch links
 - Bearings
 - Control rods


DRIVETRAIN AND TAIL BOOM


Transmits power from the engine to the gearboxes and then on to MR and TR

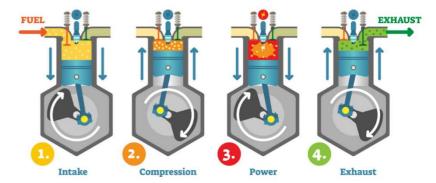
CLUTCH; CENTRIFUGAL AND FRICTION DRIVE

Freewheeling unit (sprag clutch) 4-7

- Consist of inner assembly and outer drum
- As engine RPM's are increased the centrifugal force slings clutch shoes outward towards the outer drum. The friction starts to turn the outer drum
- Automatically disengage rotor from the engine, in case of an engine failure
- Allows helicopter to autorotate
- R22 uses a sprag clutch

Located inside the upper pulley around the transmission shaft Friction Clutch allows engine to be started without engaging the rotor system

- Clutch actuator lifts upper sheave to tension double V-belt
- Rotor system can be gradually engaged


Powerplant (Basics)

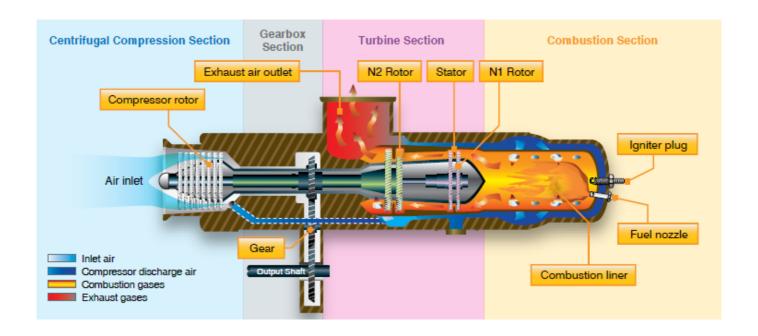
Power plant provides power to the helicopter

Mounted on to the fuselage

Reciprocating (piston)

- Four stroke engine
 - 1. Intake
 - 2. Compression
 - 3. Power
 - 4. Exhaust

<u>POWERPLANT – PISTON VS. TURBINE</u>


Piston

- Like a car
- Engine is mounted backwards in the R22
- ☐ The front of the engine is located faced the Tail Rotor
- A 15:1 fuel/air mixture is ignited by sparkplugs
- Explosion forces pistons to move up and down
- Pistons connects to a crankshaft
- Crankshaft converts vertical motion to rotating motions

Turbine (4-9)

- Continuous operation
- Compressor draws filtered air in and compresses it
- The air is directed to combustion section and mixed with fuel
- Fuel/air mixture is ignited by the continuously burning flame
- Combustion gas is forced through a series of turbine wheels, causing them to turn
- Turbine wheels provides power to intake compressor, and gearbox
- Operating RPMs can vary from 20,000 to 51,600 (https://animagraffs.com/inside-a-jet-engine/)

Compare:

Piston	Turbine	
Good:	Good:	
Good reliability	Less weight	
Low fuel consumption	High power	
Low price maintains	High efficiency	
Cheap		
Bad:	Bad:	
Heavy & big	Expensive	
Less power/weight ration	High MX	
	High fuel consumption	

MAGNETO SYSTEM

The R22 engine is fitted with two AC (alternator current) magnetos

Located just behind the firewall

Self-containing

- The magnetos are independent of any other power supply
- Connected direct to the crankshaft
- Once the engine is started, the magnetos will keep running
- Provides electrical power to the sparkplugs

Redundancy

- Engine fitted with two magnetos
- If one fails, the other will keep the engine running
- Both magnetos are connected to every cylinder
- ☐ 8 sparkplugs ☐

Engine performance

- 2 sparkplugs per cylinder
- ☐ Provides one magnetos to be able to run engine, if the other magneto dies
- Double sparkplug gives better engine performance and safety
- Rough or week engine performance could indicate a magneto failure

2.2. Flight controls (Ch3)

CYCLIC

Individually controls the rotor blades pitch angle in its cyclic of rotation

- Tilts the disc
- Determines the direction of flight, airspeed

Different designs

- Robinsons "handlebar" two pilot "sharing" the same cyclic
 - Conventional design one cycle for each pilot

COLLECTIVE

Collectively increasing or decreasing pitch angle on all rotor blades

- Allows the main rotor to create more or less lift
- ☐ Position and appearance
 - Like a hand brake in a car
 - Left of the pilots seat
 - Controlled with left hand

THROTTLE

- ☐ Controls the engines power output / RPM
- ☐ Located on the front end of the collective is a

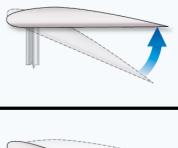
twist/grip handle that controls the throttle and RPM of the engine

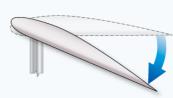
- ☐ Different flight situation requires different power setting
- ☐ Rpm control aids
 - Correlator

Mechanically opening or closing butterfly valve as collective is raised or lowered

- Governor

Maintains the engine RPMs by sensing and applying corrective throttle inputs


- ☐ Only active above 80 % engine PRMs
- ☐ On/Off switch located at front end of throttle grip


PEDALS(Antitorque Pedals) (HFH 3-5)

- ☐ Control thrust of TR to counteract the torque produced by MR
- ☐ Used to control your trim in flight, and to turn the helicopter in a hover
- ☐ Pedal inputs transmitted to TR via control rods

2.3. Electrical system(Based on POH 7-11)

BATTERY
□ 12 volt DC
□ 25 ampere
☐ Supplies power to the starter
☐ Backup for limited time if alternator fails
☐ Located on left side aft of cabin, or in cabin under the instrument panel
ALTERNATOR – R22
☐ 14 volt Alternating Current
□ 60 Ampere
☐ Converts Alternating Current to Direct Current -> AC/DC
☐ Charges the battery
☐ Main power supply to the electrical system
☐ Uniform power supply even at low engine RPM
<u>GENARATOR</u>
☐ Most likely found in bigger helicopters that needs more electricity
☐ Compared to an alternator
- Good
□ Produces DC (direct current) power
- Bad
□ Heavier
\square More MX
☐ Less output when engine is idling
Requires more power to be driven
CIRCUIT BREAKERS
☐ Protects the electrical circuit and electrical components from an overload
- Pops out when overloaded
□ Does not need to be replaced
FUSES
☐ A fuse is supposed to burn if there is a over-voltage in the circuit
☐ Two fuses on the R22
- Clutch actuator – located next to warning light test
- Clock – located on firewall behind passenger seat
AIRCRAFT LIGHTS; NAVIGATION/POSITION, ANTI-COLLISION, LANDINGLIGHTS
□ Navigation/position
- Enables you as a pilot to identify other aircrafts, and their direction of flight
- The lights are covered so etc. green can only be seen from the front right side
- Colors
☐ Green on right side
□ Red on left
☐ White on the tail boom
□Anti-collision/strobe light

- Flashing red light mounted on top of the tail-boom
- Strobe has to be turned on before engine start, and until blades stop spinning
- ☐ Landing lights
 - R22 has two landing lights mounted in the nose of the helicopter
 - One angled for normal approach and one angled for autorotation
 - According to the POH, both landing lights has to be operational during night ops

FUEL AND FUEL SYSTEM (R22POH 2-7)

PROPER GRADE FUEL

☐ Fuel grades

- 80/87 Red - 100LL Blue - 100/130 Green - 115/145 Purple - Jet A Clear

☐ If required fuel grade is unavailable, always use a higher grade

□ POH does allow us to use a lower fuel grade then 100LL, but lower fuel grade makes an engine run rougher.

So don't do that

 $\hfill\Box$ If blue and green get mixed, it will turn clear, just like Jet

Α

FUEL SYSTEM OPERATION

- ☐ Gravity feed vs. fuel pump (HFh4-22)
 - Gravity feed
- ☐ Tank over the carburetor, no assistance in pushing fuel to engine
 - Vents prevents from creating vacuum suction
 - Fuel pump
- ☐ Tank can be anywhere since a pump is pumping the fuel to the engine
- ☐ Shut-off valve
 - Between the tank and the fuel filter/carburetor.

 Disconnects the tank from the system in case of emergency
- ☐ Measurement (gauge/stick/clock/warning light)
- Gauge is not precise. Only needs to be correct when empty.
- Stick Good visualization of fuel in tank (ensure the correct side is used for the correct tank)
- Clock Good average usage of fuel, will depend of amount of power used and is a rough estimate of available fuel

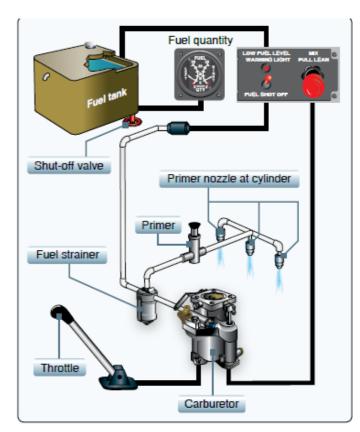
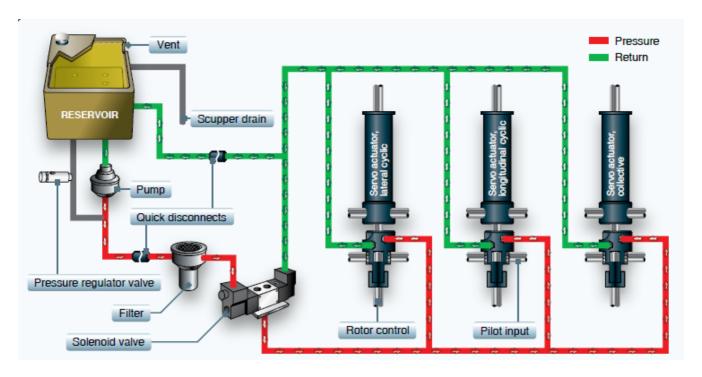


Figure 4-22. A typical gravity feed fuel system, in a helicopter with a reciprocating engine, contains the components shown here.

- Warning light - NOT TO BE USED FOR TRACKING FUEL

☐ R22 Fuel burn per l	10ur
-----------------------	------

- BETA 9 Gallons
- BETA II 10 Gallons
- ☐ R22 Fuel Capacity (R22 ch2-8)


Tanks with bladders	Total capacity US gallons(liters)	Usable capacity US gallons(liters)	
Main tank	18.3(69)	16.9(64)	
Auxiliary tank	9.7(37)	9.4 (36)	
Combined capacity	28(106)	26.3(100)	

Comonica capacity	20(100)	20.3(100)
EURI CONTINUES		
	N; PREVENTIVE MEASUE	RES, ELIMINATION
☐ Contamination are things	such as	
- Water		
- Dirt particles		
- Dirty fuel		
☐ Preventive measures		
- Clean around tank cap		
- Always put cap back	on fuel truck hose after fueling	g
- Recommended to refu	uel after last flight of the day, t	to prevent condensation
☐ Elimination		
- Gascolator at lowest 1	point in fuel system works as a	ı fuel filter
- Take fuel samples fro	m Gascolator and fuel drains a	after refueling, before flight
- Check the fuel for		
☐ Impurities, dirt partic	les, dirty fuel	
REFUELING PROCEDURE	ES AND GROUNDING(R22 PC	<u> </u>
☐ Ground aircraft with ground	wire from fuel truck	
- Static spark can ignite for	ıel	
☐ Verify that Master switch is	off	
☐ Verify proper fuel		
- If right fuel not available	e, use next grade up	
- NEVER use lower grad	de than approved by POH	
- Indications of wrong fue	el grade	
Lower grade can cause	detonation – (uncontrolled explo	osion, engine runs rough, noise level increase,
temperatures goes up!)		
☐ Permanent damage to	engine!	
☐ Always use a ladder when a	vailable to make sure that the fue	el nozzle goes straight into the tank.
A nozzle that's leaning up	against the sidewall, will cause	damage to the tank
☐ After refueling		
- Make sure filler caps on	correctly	

DETONATION AND PREIGNITION

- Remove ground wire

□ Detonation can happen due to a high temperature or a bad/low fuel grade. A low fuel grade will not withstand the compression when the piston moves toward the cylinder head during the compression stroke. The fuel will explode too early during the stroke, causing a loss on power, instead of controlled burn. This could lead to permanent engine damage. It will sound like the engine I "knocking" □ Pre-ignition can happen when a hot spot in the cylinder, caused by chunk of carbon or a damage sparkplug, ignites the fuel-air mixture prior to the desired ignition point during the stroke
2.4. Oil and oil system, hydraulic system if appropriate
OIL; TYPE AND QUANTITY
☐ Ashless Dispersant or Mineral oil
☐ Minimum 4 quarts (HAA 5 quarts)
☐ Maximum 6 quarts
OIL SYSTEM OPERATION
☐ The oil system cools and lubricates the engine
☐ Reducing friction/wear as well as temperatures
□ Consists of
- Oil
- Oil sump – Bottom of the engine – collects oil after passing through engine
- Oil pump – driven by engine, pressurize oil and transfers to parts
- Oil filter – Collects dirt and metal particles – changeable
- Oil cooler – Maintain the right oil temperature
☐ Maintenance
- For every 50 hours or four months, whichever occurs first
☐ If no oil filter is installed, change oil for every 25 hours
Hydraulic system; type, hydraulic fluid used, servicing

- ☐ Used in almost every helicopter, except smaller piston engine helicopters
- ☐ Installed to overcome high control forces
- ☐ Consists of
 - Servos for each flight control
 - Hydraulic pump, usually driven by the Main rotor so it still works during engine failure
 - Hydraulic fluid reservoir
- ☐ The hydraulic system can be switch On and Off
 - Solenoid valve is open when the system is switch on, allowing hydraulic fluid to enter the system
 - Vice versa, when the system is turned off
- Pilot is allowed to maintain control of the aircraft, due to the hydraulic oil in the actuators

2.5. Instruments

FUNCTION, MARKINGS, AND LIMITATIONS (Based on R22 POH ch2)

- ☐ Gives indications of engine or rotor performance
- ☐ Color codes for instrument markings
- **Red** Indicates operating limit. Edge of red line indicates limit. Pointer should not enter red during normal operation
 - Yellow Precautionary or special operating procedure range
 - Green Normal operating range
- ☐ Limitations
 - Engine tachometers

R22	O-320	O-360
Upper Red Arc	104-110%	104-110%
Green Arc	97-104%	101-104%

Lower Arc	90-97%	90-101%	
Yellow Arc	60-70%	60-70%	
- Rotor tachometers			
R22	O-320	O-360	
Upper Red Line	110%	110%	
Yellow Arc	104-110%	104-110%	
Green Arc	97-104%	101-104%	
Yellow Arc	90-97%	90-101%	
Lower Red Line	90%	90%	
Yellow Arc	60-70%	60-70%	

- Power off
- □Maximum 110 %
- Minimum 90%
- Airspeed indicator
- ☐ Green arch 50-102 KIAS
- ☐ Red line (Vne) 102 KIAS
- Oil pressure
- ☐ Lower red 25 psi
- ☐ Lower yellow arc 25-55 psi
- ☐ Green arc 55-95 psi
- ☐ Upper yellow arc 95-115 psi
- ☐ Upper red line 115 psi
- Oil temperature
- ☐ Green arc 75 to 245°F (24 to 118°C)
- ☐ Red line 245°F (118°C)
- Cylinder head temperature
- ☐ Green arc 200 to 500°F (93 to 260°C)
- ☐ Red line 500°F (260°C)
- Manifold pressure
- ☐ O-320 engine (R22 Beta)

Yellow arc 21.0 to 25.2 in. HG

Red line 25.2 in. HG

☐ O-360 engine (R22 Beta II)

Yellow arc 19.6 to 24.1 in. HG

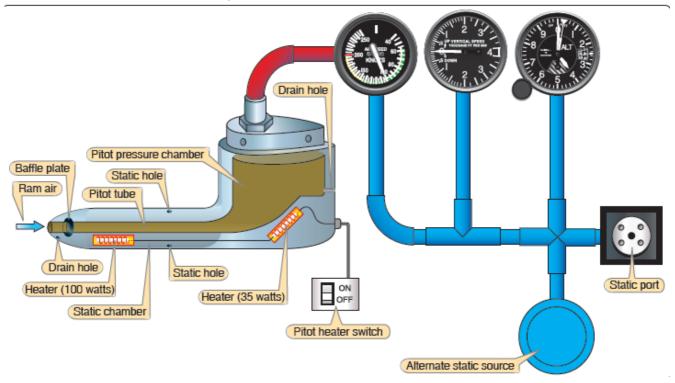
Red line 24.1 in. HG

- Carburetor Air temperature
- ☐ Yellow arc -15 to 5°C

DUAL TACHOMETERS

- ☐ Left needle represents engines rpm in percent(POH 1-6)
- ☐ Right needle represents rotor rpm in percent
- ☐ Avoid 60-70% when rotor engaged sympathetic

Deshuai Ren/www.pilotseal.com


resonance

MANIFOLD PRESSURE GAGE

- ☐ Used to determine engine throttle setting
- ☐ Measures vacuum pressure going into the engine
- ☐ Manifold Air Pressure (MAP) is determined by chart for given pressure altitude and Outside Air Temperature (OAT)

2.6. Flight instruments, function, markings, and limitations

PITOT STATIC SOURCE (ifh5-3)

Pitot tube

- Small tube in front of aircraft
- Source for dynamic pressure
- Drain hole prevents water from collecting
- Sometimes heated to prevent ice (mostly in IFR ops)
- Used by

Airspeed indicator (ASI) in conjunction with Static port

Static port

- White hose located in cowlings
- Collects ambient air (atmospheric pressure)
- Used by

Airspeed Indicator (ASI) in conjunction with static port

Vertical Speed Indicator (VSI)

Altimeter (ALT)

- Can also be located on side of a/c like R44
- Alternate static source, sometimes located in cabin, otherwise break VSI glass in an emergency Pitot-static system blockage
 - Can be blocked by:

Dirt, ice, bugs

- Always check sources during preflight
- Will indicate big errors if blocked

- Blocked pitot tube

ASI affected

Pitot tube blocked and drain hole open - ASI reads zero

Pitot and drain hole blocked:

At same altitude - ASI reads the same even if airspeed increased/decreased

Climb - IAS increase

Descent - IAS decrease

- If static port blocked

ASI, VSI and ALT are affected

Altimeter doesn't change

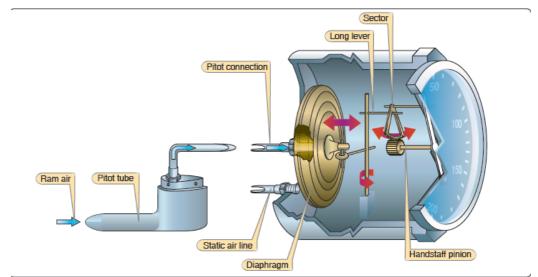
VSI indicates zero

ASI - Altitude above where static port blocked will indicate less airspeed and altitude below where static port blocked will indicate more airspeed

AIRSPEED INDICATOR

Indicates aircraft speed through the air

Compares dynamic pressure against static pressure


- Ram air impacts on diaphragm
- Bigger difference Greater airspeed

Types of speed

- Indicated

airspeed

- Read on your

ASI, subject to instrument and position errors

- Calibrated airspeed

Indicated airspeed corrected for instrument and installation errors
 Calibrate airspeed according to POH 5-2

- True airspeed

- Actual airspeed, calibrated airspeed corrected for altitude and nonstandard

Deshuai Ren/www.pilotseal.com

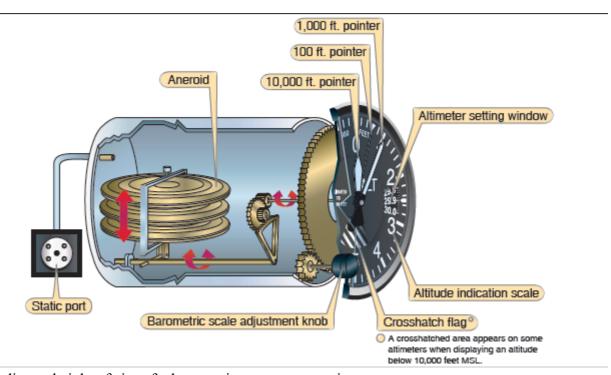
temperature. As pressure and density decrease with altitude, IAS will be lower than true airspeed

- Groundspeed

- Your actual speed over the ground

True airspeed corrected for wind

Headwind decreases groundspeed, Tailwind increases groundspeed


Airspeed indicated by a GPS

Limitations on the airspeed indicator

- Calibrated to ISA.
- Not for actual atmospheric conditions
- Small effect at low airspeeds
- R22 is limited to 102 knots (kts) -> VNE at sea level up until 3000 density altitude
- VNE decreases as density altitude increases

-Alternate pitot static source

2.7. Pressure altimeter

- -Indicates height of aircraft above a given pressure setting
- -Aneroid wafers contains a pressure of 29.92 "Hg
- -When the ambient pressure from the static source decreases around the aneroid wafers, the altimeter will indicate a higher altitude, and vice versa

INDICATED ALTITUDE

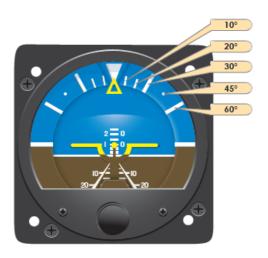
- \square -What is shown on the altimeter
- □- Height above Mean Sea Level (MSL) when set to current altimeter setting TRUE ALTITUDE
- ☐ -The vertical distance of the aircraft above sea level the actual altitude

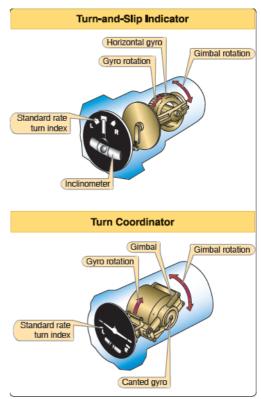
□ -Expressed as feet above MSL PRESSURE ALTITUDE □ -The altitude above standard datum plane when altimeter is set to 29.92 "Hg □ -The altitude indicated when altimeter is set to 29.92 "Hg ABSOLUTE ALTITUDE (HEIGHT) □ -The vertical distance of an aircraft above the terrain □ -Expressed as feet Above Ground Level (AGL)
2.8. Vertical speed indicator
FUNCTION - Measures the rate of climb / rate of descent - The diaphragm has a direct source from the static port - As pressure inside the diaphragm is decreased as the aircraft climbs, the diaphragm will decrease and indicate a climbing trend, and vice versa - The Calibrated leak causes a pressure differential that is indicated as a climb or descend - If climb or descent is continued, needle will stabilize after 6-9 seconds and indicate rate of climb - Calibrated leak causes a lag that LIMITATIONS - Initially not accurate - Therefore it not only gives you a rate, it also gives you trend of what is going on - Delay in accurate display of vertical speed - Calibrated leak causes the pressure to equalize after about 6 to 9 seconds - Non correct readings when - In turbulence – quick changes - Abrupt control inputs
2.9. Gyroscopic instruments
PRINCIPLE OF GYROSCOPE
 □ Any spinning object exhibits gyroscopic properties □ Two fundamental properties of gyroscopic action Rigidity in space □ Principle that a gyroscope remains in a fixed position in the plane in which it is spinning □ If a spinning bicycle wheel is held with two hands, it's acting like a gyro, there for it is much harder to change the plane it's spinning in, compared to changing the plane when it's not
spinning - Precession □ Precession is the tilting or turning of a gyro in response to a deflective force □ The reaction to this force, does not occur where the force is applied, but 90 degrees later in the direction of rotation This allows the gyro to sense the amount the aircraft is turning

This applies to gyroscopic instruments because they are suspended in gimbals and when the aircraft turns, a small force is applied-Principle of gyroscope

-Gyroscope errors

Power	sources;	vacuum	system,	electrical	system


- \Box Aircraft and instrument manufacturers' designs redundancy into flight instrument systems, in case one of the systems fails, there is a backup system.
 - ☐ Different sources of powering the gyroscopic instruments
 - Electrical source, which is used in R22 instrument trainers
 - ☐ Instruments driven by electric motors
 - ☐ Electricity supplied from separate bus bar for redundancy
 - Vacuum system
 - ☐ Air is sucked through instruments and spins them by help of scooped wheels
 - □ Vacuum pressure gauge installed in cockpit to verify correct pressure(ifh 5-18)


ATTITUDE INDICATOR

- ☐ Gyro acts as an artificial horizon
- ☐ Mounted in double gimbal allows the gyro to pitch and roll
- ☐ Top of the instrument is blue indicates the sky
- ☐ Bottom of the instrument is brown indicates the ground
- ☐ Orange bar indicates aircraft
- \Box Bank index on top of instrument 10°, 20 °, 30 °, 60 ° and 90 °
- ☐ Limitations
 - Turning Error
- \square Precession causes gyro to turn towards the inside of a turn
 - ☐ Most visible when turning 180°
 - Acceleration Error
- $\hfill \square$ Quick accelerations cause small pitch up due to precession.
 - Deceleration
- ☐ Causes horizon to dip down, causing a false indication of pitch down attitude

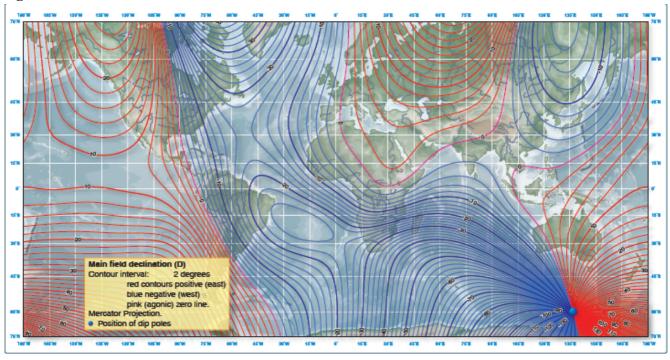
TURN AND SLIP INDICATOR

- ☐ Turn and slip indicator
 - Can only indicate rate of turn
 - Gyro mounted on single gimbal
 - Turn indicators works with gyroscopic precession
 - Inclinometer ball in fluid measures skid and slip
- $\hfill\Box$ Indicates the relationship between the angle of bank and rate of yaw

☐ Turn Coordinator

- Can indicate rate of turn and rate of roll
- Senses rotation around both the roll and yaw axis
- Gimbal frame canted about 30° from the longitudinal axis, allows it to sense rate of turn and rate of roll

2.10. Magnetic Compass(ifh5)


MAGNETIC FIELD OF THE EARTH

- ☐ Earth is a huge magnet, spinning in space surrounded by a magnetic field
- ☐ Magnetic field made up by lines of flux
- ☐ Leaves the surface at the magnetic North pole and reenter at the magnetic South Pole
- ☐ With Lines of flux are two important characteristics
 - Any magnet that is free to rotate will align with them
 - An electrical current is induced into any conductor that cuts across them

Magnetic Compass Errors

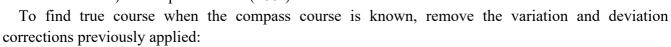
The magnetic compass is the simplest instrument in the panel, but it is subject to a number of errors that must be considered.

Magnetic variation

Isogonic lines are lines of equal variation.

☐ Magnetic variation is the difference between true north and magnetic north in angles

- True north geographic point the North pole
- Magnetic north is what the compass needle is pointing at
- ☐ Described in East and West
 - East is negative, west is positive (east least / west best)
- ☐ Magnetic poles are moving all the time and therefore don't coincide with true north/south
- ☐ Isogonic lines printed on charts
 - Needs to be calculated with when flight planning


Correction for Variation

Step 1: Determine the Magnetic Course

True Course (180°) \pm Variation (+10°) = Magnetic Course (190°)

Step 2: Determine the Compass Course

Magnetic Course (190°, from step 1) \pm Deviation (-2°, from correction card) = Compass Course (188°)

Compass Course ± Deviation = Magnetic Course ± Variation= True Course

\square TVMDC

True North: 360°

Variation (TTD): $E(-15^{\circ})$

Magnetic Deviation: $360^{\circ} - 16^{\circ} = 344^{\circ}$

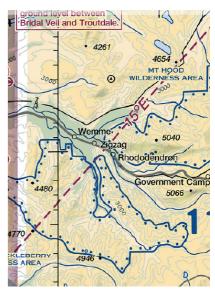
Compass deviation card: Check the aircraft compass

deviation

Compass deviation

- ☐ Metal and instruments inside the helicopter creates magnetic fields
- ☐ Distorts the earth's magnetic field
- \square False reading of the compass
- ☐ Compass deviation card specific for every aircraft

FOR	000	030	060	090	120	150
STEER						
RDO. ON	001	032	062	095	123	155
RDO. OFF	002	031	064	094	125	157


FOR	180	210	240	270	300	330
STEER						
RDO. ON	176	210	243	27/	296	325
RDO.OFF	174	210	240	273		327

Acceleration / Deceleration Error

- ☐ Most noticeable on west / east headings
- ☐ ANDS Accelerate North Decelerate South
 - In the northern hemisphere, the compass swings to the north while accelerating the aircraft, and swings to the south while decelerating
 - When speed stabilized the compass reads correct again

Turning Error

☐ Most noticeable when turning from or into a northerly or southerly heading **Deshuai Ren/www.pilotseal.com**

☐ UNOS – Undershoot North Overshoot South

- ☐ When an aircraft turns the magnetic dip will cause the needle to "fall down" pointing to the earth
- ☐ This causes an initial indication of turning east when turning west from a northerly direction
- □ Northern vs. southern hemisphere dip errors opposite

Resource Instrument Flying Handbook ch5 R22 POH ch2&5 Helicopter Flying Handbook Ch3&4